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We generalize a result of Schwenker concerning the integral representation of
weak Markov systems. © 1992 Academic Press, Inc.

In the sequel, A will denote a subset of the real line containing at least
n + 2 elements, and I(A) will denote the convex hull of A. A is said to
satisfy Property B if between any two distinct points of A is another point
of A.

A sequence of functions Zn := (zo, ..., zn) defined on A is called a (weak)
Tchebycheff system if it is linearly independent and for all points
xo< ... <xn in A, det{z;(xJ}Zj=o>O (;;~O). If Zk is a (weak) Tchebycheff
system for k = 0, ..., n, we say that Zn is a (weak) Markov system. Note
that, in this case, Zo > 0 (zo ~ 0). If Zo == 1 we say that Zn is normalized. In
the following definitions, when we say that a basis Un = {uo, ..., Un} is
obtained from Zn by a triangular linear transformation, we mean that
Uo == Zo and Uk - Zk E S(Zk_ d (k = 1, ..., n), where S(Zd denotes the linear
span of Zk'

DEFINITION 1. Zn is said to be endpoint nondegenerate (END) provided
that for every c in A, the restrictions of S(Zn) to A (\ ( - 00, c) and to
A (\ (c, (0) have the same dimension as S(Zn)' This term, coined by
D. J. Newman, was first used by Zwick in [11]. It was also used by Zielke
in [10], where it is referred to simply as "nondegeneracy."

DEFINITION 2. Zn is said to satisfy Condition E if for all c E I(A) the
following two requirements are satisfied:

(a) If Zn is linearly independent on [c, (0) (\ A then there exists a
basis (uo, ..., un) for S(Zn)' obtained by a triangular linear transformation,
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such that for any sequence of integers 0 ~ k(O) < ... < k(m) ~ n, (Uk(r));."~o

is a weak Markov system on A r-. [c, 00).

(b) If Zn is linearly independent on (-oo,c)]r-.A then there exists
a basis (vo, ..., vn) for S(Zn), obtained by a triangular linear transformation,
such that for any sequence of integers 0 ~ k(O) < ... < k(m) ~ n,
(( -1 y- k(r) Vk(r)):"~o is a weak Markov system on ( - 00, c] r-. A.

DEFINITION 3. Zn is said to satisfy Condition I if for every real number
c, Zn is linearly independent on at least one of the sets (- 00, c) r-. A and
A r-. (c, 00 ).

DEFINITION 4. Zn is called weakly nondegenerate if it satisfies both of
conditions I and E.

DEFINITION 5. Zn is representable if and only if, for all c E A there is a
basis Un' obtained from Zn by a triangular linear transformation (hence,
uo(x) = zo(x)), a strictly increasing function h (an "embedding function")
defined on A, with h(c) = c, and a sequence Wn = (WI' ..., wn ) of continuous,
increasing functions defined on I(h(A)), such that

In this case we will say that (h, c, W n, Un) is a representation of Zn-

Although there have been earlier attempts [2,5], the first correct result
linking weak Markov systems and representability is due to Zielke [10],
who proved that an END weak Markov system is representable (the
representability of some classes of Markov systems has been known for a
long time; see, e.g., [1]). Zielke's result was generalized by this author in
[7], where it was shown that if Zn is a weakly nondegenerate normalized
weak Markov system, then it is representable. This result was in turn
improved by Schwenker [3], who proved that if Zn is a normalized weak
Markov system, then Condition E is satisfied if and only if Zn is represen­
table. In this paper we show how Schwenker's result can be obtained by
making slight changes in the arguments developed in [7]. Using a result
proved in [8], we also obtain a generalization of Schwenker's theorem.
Before continuing we must introduce an additional definition.
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DEFINITION 6. Let Wn = (w ll ... , wn ) be a sequence of real-valued func­
tions defined on (a, b), let h be a real-valued function defined on A with
h(A) c (a, b), and let Xa < ... < Xn be points of h(A). We say that W n
satisfies Property M with respect to h at (xa, ..., x n) if there is a sequence
(ti,/ i =0, ..., n; j =0, ..., n - i) in h(A) such that

(a) xj = ta,j (j=0, ..., n);

(b) ti.j<ti+l,j<ti.j+1 (i=O, ...,n-l;j=O, ...,n-i).

(c) For i= 1, ..., n, w,(x) is not constant at ti,j(j=O, ..., n-i).

To say that a functionfis not constant at a point CE (a, b) is to say that
for every c:>0 there are points Xt,x2E(a,b) with C-C:<Xt <C<X2<
C+C:, such thatf(xd""f(x2)'

THEOREM 1. Let Zn be defined on a set A. Then the following statements
are equivalent:

(a) Zn is a normalized weak Markov system that satisfies Condition E.

(b) Zn is representable, and there is a representation (h, C, Wn, Un) of
Zn such that Wn satisfies Property M with respect to h at some sequence
Xa< .,. <xn in A.

(c) Zn is representable, and for every representation (h, c, Wn, Un)
of Zn, Wn satisfies Property M with respect to h at some sequence
Xa< .. · <xn in A.

DEFINITION 7. A function f defined on an open interval I is said to be
c-absolutely continuous if it is absolutely continuous in every compact
subset of I.

DEFINITION 8. Let Zn := (za, , zn) be a sequence of functions defined
on a set A, and let Vn := (va, , vn) be a sequence of functions defined
on a set B. We say that Zn can be embedded in Vn if there is a strictly
increasing function h: A ~ B such that Vi [h(t)] = Zi(t) for every tEA and
i = 0, ..., n. The function h is called an embedding function.

In the proof of Theorem 1 we shall need the following analog of [7,
Theorem 3J:

THEOREM 2. Let c E A. If Zn is a normalized weak Markov system on A
that satisfies Condition E, then it can be embedded in a normalized weak
Markov system Vn of c-absolutely continuous functions defined on an open
interval and satisfying condition E there, and Vn and the embedding function
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h( t) can be chosen so that h(c) = c. Moreover, if A satisfies Property B, the
converse statement is also true.

The proof of Theorem 2 is based on the following auxiliary propositions.

LEMMA 1. Let Zn be a weak Markov system on a set A, satisfying
Condition E, let p: A ~ R be a strictly increasing function, and let
vr(t):=zr(p-l(t», r=O, ...,n. Then Vn:=(VO,""vn) is a weak Markov
system on p(A) that satisfies Condition E.

The proof of Lemma 1 is straightforward and will be omitted.

LEMMA 2. Let [a, b] be a compact interval, fE C[a, b] of bounded
variation and g E C[a, b] strictly increasing. For a ~ (1. ~ 13 ~ b, let V(f, (1., 13)
denote the total variation off on [(1., 13], Let c E [a, b] be arbitrarily fixed,
and define v(f, t) to equal V(f, c, t) on [c, b] and - V(f, t, c) on [a, c).
Finally, let q(t) = g(t) + v(f, t) and h(t) = f[q-I(t)]. Then h(t) is absolutely
continuous on [q( a), q(b)].

This is [7, Lemma 2].

LEMMA 3. Let Un := (uo, ..., un) be a normalized weak Markov system on
a set A, satisfying Condition E, let II :=inf(A), 12 :=sup(A), cEI(A), and
assume that u E S( Un)'

(a) If c> II and c is a point of accumulation of (/1' c) n A, then
limt~c-u(t) exists and is finite.

(b) If c < 12 and c is a point of accumulation of (c, 12 ) n A, then
lim t ~ c+u(t) exists and is finite.

Proof We only prove (a); the proof of (b) is similar and will be
omitted.

We proceed by induction. The assertion is trivially true for n = O. To
prove the inductive step, assume that for any function win S(Un-d (where
Un _ I = (uo, ..., Un _ d) lim H c-w( t) exists and is finite. Since the definition
of a weak Markov system implies that Un is linearly independent, it is easy
to see that there is a point dE An [c, 00) such that Un is linearly inde­
pendent in (- 00, d] n A. From Condition E we conclude that there is a
function u = Un + w, with WE S( Un_ d, such that u is monotonic on
(- 00, d] n A; whence the conclusion readily follows. Q.E.D.

LEMMA 4. Let Zn be a normalized weak Markov system of bounded
functions defined on a compact interval I = [a, b]. Then all the elements of
S(Zn) are of bounded variation on I.

This is [7, Lemma 4].
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LEMMA 5. Let Zn be a normalized weak Markov system on an interval I
(open, closed, or semiopen) that satisfies Condition E, and let C E I. If Z I is
continuous at c, then all the elements of S(Zn) are continuous at c.

Proof We shall only prove that if c> inf(I), then all the elements of
S(Zn) are left-continuous at c. The proof of the other case is similar and
will be omitted.

We proceed by induction on n. For n = I the assertion is true by
hypothesis; let therefore n> 1. Assume first that Z I is constant on (inf(I), c).
The linear independence implies there is a tiE (c, sup(I) ) such that Z I (c) <
Z I (t d. As in the proof of Lemma 3 we deduce that there is a point CI < C

in I such that Zn is linearly independent on SI:= [CI, oo)nI. Thus from
Condition E(a) we conclude that there is a sequence Un, obtained from Zn
by a triangular linear transformation, such that both (1, un) and (1, UI , un)
are weak Markov systems on SI' The first assertion is equivalent to saying
that Un is increasing on S 1> from which we conclude that un(c -)::::; un(c).
Let CI <t<c. Then uI(t)=uI(c)<uI(tj). If UI(C)=O the next identity is
obvious, whereas for U I (c) > 0 it foHows by subtracting U I (c) times the first
row, from the second row:

1

0::::; uj(t) uI(c) uI(td

un(t) un(c) Un(tl)

ul(td - UI(C)

un(td

= -[ul(td-ul(c)][un(c)-un(t)], whence un(c)::::;un(t). Passing to the
limit we infer that un(c)::::;un(c-), and therefore un(c-)=un(c).

Assume now that there is a t2 E (inf(I), c) such that ZI(t2) < ZI (C). There
is a C2 E (c, sup(I)) such that Zn is linearly independent on S2:=

( - 00, c2 ] n I. From Condition E(b) we conclude that there is a sequence
Un' obtained from Zn by a triangular linear transformation, such that both
(l,(_l)n-I un ) and (l,u l ,(-ltun) are weak Markov systems on S2'

From the first assertion we infer that (- 1t - I un( C - ) ::::; ( -1 t - I un( c). It
is also clear that UI(t2) < UI(C), For the sake of completeness we reproduce
the argument used in the proof of [7, Lemma 5]. If t2 < t < c, we have

640/68/1-3

0::::; U I (t2 )

(-It Un(t2)

1

=(_l)n Uj(t2

Un(t2)

1 1

UI(t) UI(C)

(-ltun(t) (-ltun(c)

1 0

UI(t) uj(c) - UI(t) .

un(t) un(c) - un(t)
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Since ul(t) is continuous at c, passing to the limit we have

1 1 0

O~(-1t UI (t2) ul(c) 0

Un(t2) un(c-) un(c) - un(c-)

= (-1 t [un(c) - UI (t 2)] [un(c) - un(c-)];

whence we conclude that (_l)n-l un(c) ~ (_l)n-l un(c-).
We have thus far shown that un(t) is left-continuous at c. Since Un =

Zn +W, with WE S(Zn_ d, applying the inductive hypothesis we conclude
that also Zn is left-continuous at c. Q.E.D.

Proof of Theorem 2. The proof is achieved by repeating "verbatim" the
proof of [7, Theorem 3], but omitting that part of the argument that is
associated with the proof of Condition 1. Q.E.D.

To prove Theorem 1 we also need the following two lemmas:

LEMMA 6. Let Un := (Uo, ..., Un) be a weak Markov system on an interval
(a, b), that satisfies Condition E. If for some C E (a, b), uo(c) = 0, then
Uk(C) = 0, k = 1, 2, ..., n.

Proof We proceed by induction on n. For n = 0 the assertion is true by
hypothesis. To prove the inductive step note first that there is a point
to E (a, b) such that uo(toh 6 O. Assume, e.g., that to < c. It is readily seen
that there is a d, C < d < b, such that Un is linearly independent on (a, d].
Then, from Condition E we infer that there is a sequence Vn , obtained
from Un by a triangular linear transformation, such that both (( - 1)n vn)
and (vo, (_l)n+ 1vn) are weak Markov systems on (a, d]. From the first
condition we infer that ( -1 t vn ( c) ~ O. Applying the second condition we
have vo(to) ~ 0 (since vo(to) # 0, this implies that vo(to) > 0), and

~ I vo(to), 0 \ - _ n+ 1 •
0"" (-1t+ 1 vn(t

O
)' (_l)n+lvn(c) -vo(to)( 1) vn(c),

whence ( _l)n Vn(c) ~ O. We thus conclude that vn(c) = O. Assume now that
to> C. It is readily seen that there is a d, a < d < c, such that Un is linearly
independent on [d, b). Applying Condition E we conclude that there is a
set Vn, obtained from Un by a triangular linear transformation, such that
both (vn) and (vo, Vn) are weak Markov systems on [d, b). The first condi­
tion implies that vn(c) ~ O. The second condition implies that vo(to) > 0 and

whence vn(c)~O. Therefore, vn(c)=O. Q.E.D.
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LEMMA 7. Let Wn := (WI> ... , wn) be a sequence of increasing and
continuous functions defined on an open interval (a, b), let c E (a, b), Uo == 1,
and let uk(x):=J~tl"'J:k-ldwAtd.. ·dwj(td for k=l, ...,n. Assume
a<xo< ... <xn<b; then det[ui(xj);i,j=O, ...,n]>O if and only if W n

satisfies Property M with respect to the identity function at (xo, ..., x n).

This is the Lemma of [8].

Proof of Theorem 1. a ~ c. To prove that Zn is representable we
simply repeat "verbatim" the proof of [7, Theorem 1], but replacing every
occurrence of the phrase "weakly nondegenerate" with "Condition E." One
of the steps in this proof has been described too tersely, making the
argument difficult to follow: On [7, p. 9], to show that Q~~j is a (weakly
nondegenerate) weak Markov system on D, the reader is referred to a book
by Zielke [9, Theorem l1.3(b)]. Zielke, however, has a more general
definition of a weak Markov system, and so only proves the weak
constancy of the sign of the corresponding determinant, whereas we need
to prove that it is actually nonnegative. To do this, assume that for some
k and every t j < ... <tk in D, det(q;(tj ))7,j=l ~O. Since qi(Sj)-qi(Sj_d=
Jt~ 1 q; (t) dt, proceeding as in, e.g., the proof of [1, p. 382, Lemma 1], we
conclude that for every So < ... < Sk in (al> bd (where (a j , bd is defined in
[7, p. 8]), det(qi(sjmj~O~O,a contradiction.

Another, and simpler, way of showing that Q~_j is a weak Markov
system on D, consists in applying [4, Lemma 1].

Note that in [7, p. 9], in the paragraph that begins on line 11, there is
no need to use Condition I, since the linear independence of Q~_ 1 on
(a j ,b2 ]nD follows from the linear independence of Q~-l on D. Let
(h, c, W n , Un) be a representation of Zn. Since Zn is linearly independent
by definition, so is Un, and the conclusion readily follows from Lemma 7.

c~ b. Trivial.

b~ a. Since there is a representation (h, C, Wn, Un) such that Wn
satisfies Property M with respect to h at some sequence Xo < ... < X n in A,
applying Lemma 7 we deduce that Un (and hence Zn) is linearly inde­
pendent. The assertion that Un (and hence Zn) is a weak Markov system
is proved by a procedure similar to that employed in, e.g., the proof of [1,
p. 382, Lemma 1]. The proof of Condition E also uses a similar argument
(see [6, p. 205] for more details). Q.E.D.

REFERENCES

1. S. KARLIN AND W. J. STUDDEN, "TchebychefT Systems: With Applications in Analysis and
Statistics," Interscience, New York, 1966.



32 R. A. ZALIK

2. M. A. RUTMAN, Integral representation of functions forming a Markov series, Soviet
Math. Dokl. 164 (1965), 1340-1343.

3. F. SCHWENKER, "Integraldarstellung schwacher Markov-Systeme," dissertation, University
of Osnabriick, Sept., 1988.

4. R. A. ZALIK, Smoothness properties of generalized convex functions, Proc. Arner. Math.
Soc. 56 (1976), 118~120.

5. R. A. ZALIK, Integral representation of Tchebycheff systems, Pacific J. Math. 68 (1977),
553-568.

6. R. A. ZALIK AND D. ZWICK, On extending the domain of definition of Ceybsev and weak
Cebysev systems, J. Approx. Theory 57 (1989), 202-210.

7. R. A. ZALIK, Integral representation and embedding of weak Markov systems, J. Approx.
Theory 58 (1989), 1-11.

8. R. A. ZALIK, Integral representation of Markov systems and the existence of adjoined
functions for Haar spaces, J. Approx. Theory 65 (1991), 22-31.

9. R. ZIELKE, "Discontinuous Cebysev Systems," Lecture Notes in Mathematics, Vol. 707,
Springer-Verlag, Berlin/New York, 1979.

10. R. ZIELKE, Relative differentiability and integral representation of a class of weak Markov
systems, J. Approx. Theory 44 (1985), 30-42.

11. D. ZWICK, Some hereditary properties of WT-systems, J. Approx. Theory 41 (1984),
114-134.


